CONFORMAL DISTORTION OF BOUNDARY SETS

D. H. HAMILTON

ABSTRACT. Conformal maps f of the disk into itself have the property that $\dim f^{-1}(F) \leq \dim F$ for any set F on the unit circle.

1. Introduction. A common theme in complex analysis is the estimation of the Hausdorff dimension of special sets, for example the limit set of a Fuchsian group or the support of harmonic measure. A connecting link is the boundary distortion caused by conformal maps. For instance let f map the unit disk \mathbf{D} conformally onto a fundamental region Ω of a Fuchsian group. A classical lemma of Löwner [10] shows that the length of $\overline{\Omega} \cap \partial \mathbf{D}$ is greater than $f^{-1}(\overline{\Omega} \cap \partial \mathbf{D})$; however if the latter is zero this is of no use for estimating Hausdorff dimension. We prove

THEOREM 1. For any conformal map f on \mathbf{D} , with $f(\mathbf{D}) \subset \mathbf{D}$ and set $E \subset \partial \mathbf{D}$ with angular limits $f(E) \subset \partial \mathbf{D}$ we have

$$\dim(f(E)) \ge \dim(E)$$
.

The result is provided not by a distortion theorem for Hausdorff measures but from an estimate for α -capacities. Recall that the inner α -capacity $C_{\alpha}(E)$ of a set E is defined by means of kernels

$$k_{\alpha}(t) = \begin{cases} \log(1/t), & \alpha = 0, \\ 1/t^{\alpha}, & 0 < \alpha \le 1, \end{cases}$$

so that

$$C_{\alpha}(E) = k_{\alpha}^{-1} \left\{ \inf_{\mu} \iint_{EE} k_{\alpha}(|x-y|) d\mu(x) d\mu(y) \right\},$$

where the infimum is taken over all probability measures μ supported by compact subsets of E (see Carleson [5]).

Now let \mathcal{S} be the family of functions f one-to-one analytic on \mathbf{D} , satisfying f(0) = 0. Theorem 1 is an immediate consequence of

THEOREM 2. Suppose that for $f \in \mathcal{S}$ we have $f(\mathbf{D}) \subset \mathbf{D}$ and some $E \subset \partial \mathbf{D}$ with angular limits $f(E) \subset \partial \mathbf{D}$. Then for $0 \le \alpha \le 1$

$$C_{\alpha}(f(E)) > |f'(0)|^{-1/2}C_{\alpha}(E).$$

REMARKS. The case $\alpha = 0$ is due to Pommerenke (see [18, p. 348]).

Actually our results are somewhat more general than the case $f(\mathbf{D}) \subset \mathbf{D}$ and $f(E) \subset \partial \mathbf{D}$. Suppose that for a general Riemann mapping $f \colon \mathbf{D} \to \Omega$ there is a

Received by the editors July 8, 1986.

1980 Mathematics Subject Classification (1985 Revision). Primary 30C35; Secondary 30C55, 30C40.

Research supported in part by NSF Grant 8501509.

Dinismooth curve γ outside Ω so that $f(E) \subset \gamma$. By composition of conformal maps we deduce $\dim(f(E)) \geq \dim(E)$. This may be compared with a result of Markov [12] who proves for arbitrary f and $E \subset \partial \mathbf{D} \dim(f(E)) \geq \psi(\dim E)$, where ψ is an increasing function with $\psi(t) \geq 2t/(1+t)$ as $t \to 1$. This sharpens a classical result of Beurling [3] that $\psi(t) \geq t/2$. Beurling also proved that $C_0(f(E)) = 0$ implies $C_0(E) = 0$. We extend Beurling's theory to general capacities.

DEFINITION 1. Let $h: \mathbf{R} \to \mathbf{R}$ be absolutely monotone, i.e., h, h', h'', \ldots are positive. Define kernel $k(t) = h(\log(1/t))$ and inner capacity

$$C_h(E) = k^{-1} \left\{ \inf \iint_{EE} k(|x - y|) \, d\mu(x) \, d\mu(y) \right\},$$

where the infimum is taken over probability measures μ supported on compact subsets of E. We say that such a capacity is admissible if $\int_0^1 h(\log(1/t))t \, dt < \infty$. Carleson [5] studied such capacities in the case that h is monotone.

THEOREM 3. Suppose that the capacities C_j (j=1,2) derived from kernels $h(\log(1/t^j))$ are admissible. Then for any function $f(z) = \sum_{n=0}^{\infty} a_n z^{-n}$ univalent in $\{|z| > 1\}$ and for any $E \subset \partial \mathbf{D}$

$$C_1(f(E)) \ge \{C_2(E)\}^{1/2}$$
.

COROLLARY 1. Suppose that h is strongly monotone with polynomial growth. Then for any f univalent on \mathbf{D} and $E \subset \partial \mathbf{D}$ we have $C_h(E) = 0$ whenever $C_h(f(E)) = 0$.

Beurling also studied the set $E \subset \partial \mathbf{D}$ on which a univalent function could be zero, showing that $C_0(E) = 0$. On the other hand Carleson [4] shows that sets of positive logarithmic capacity need not be sets of uniqueness for the Dirichlet class. In [1] it was asked if $C_0(E) > 0$ and $f_1 = f_2$ on E for $f_j \in \mathcal{S}$ implies $f_1 \equiv f_2$. We show that there is a set $E \subset \partial \mathbf{D}$ of dimension 1 which is not a set of uniqueness for \mathcal{S} . Here there is a strong connection between fixed sets of \mathcal{S} and zero sets of Hölder classes, (see also Döppel, Köditz and Timman [6]). In particular E is the fixed set of an analytic flow if and only if E is a Carleson set, i.e. E has length zero and if its complementary subarcs have lengths l_n satisfying $\sum l_n \log(1/l_n) < \infty$.

2. Outline of the proof. The idea of the proof is easy to explain when we assume that the conformal map $f: \mathbf{D} \to \mathbf{D}$ has smooth extension to $\overline{\mathbf{D}}$.

First we use an inequality of Nehari (see §4) which holds for $f \in \mathcal{S}$ and $f(\mathbf{D}) \subset \mathbf{D}$. In the case that f is smooth on $\partial \mathbf{D}$ and $E \subset \partial \mathbf{D}$ is mapped into $\partial \mathbf{D}$ the Nehari inequality may be transformed to

$$\iint_{EE} \log \frac{1}{|f(x) - f(y)|} \, d\lambda(x) \, d\lambda(y) \le \iint_{EE} \log \frac{1}{|x - y|} \, d\lambda(x) \, d\lambda(y)$$

for all real measures λ (supported on E) which are admissible, i.e.,

$$\iint_{EE} \log \frac{1}{|x-y|} \, d\lambda(x) \, d\lambda(y) < \infty.$$

Now as $E, f(E) \subseteq \partial \mathbf{D}$ the kernels are positive semidefinite so we may use a lemma of Schur (see §3) to "exponentiate" the inequalities. Thus we get for $0 < \alpha \le 1$

$$\iint_{EE} \frac{d\lambda(x) \, d\lambda(y)}{|f(x) - f(y)|^{\alpha}} \le \iint_{EE} \frac{d\lambda(x) \, d\lambda(y)}{|x - y|^{\alpha}}$$

for all admissible measures λ , i.e.,

$$\iint_{EE} \frac{d\lambda(x) \, d\lambda(y)}{|x-y|^{\alpha}} < \infty.$$

We then let λ be a sequence of probability measures such that

$$\iint_{EE} \frac{d\lambda(x) \, d\lambda(y)}{|x-y|^{\alpha}} \to \{C_{\alpha}(E)\}^{-\alpha}$$

and thus from the definition of α -capacity

$$\{C_{\alpha}(f(E))^{-\alpha} \le \inf \iint_{EE} \frac{d\lambda(x) d\lambda(y)}{|f(x) - f(y)|^{\alpha}} \le \{C_{\alpha}(E)\}^{-\alpha}.$$

Unfortunately this does not work very well in general. We need to approximate E by sets in \mathbf{D} and then take care of the fact that our kernels are no longer positive semidefinite.

One might also expect to prove Theorem 1 from a result for Hausdorff measures. However it is not true that if $f \in \mathscr{S}$ maps \mathbf{D} into \mathbf{D} and $E \subset \partial \mathbf{D}$ into $\partial \mathbf{D}$ that $\Lambda(f(E)) \geq \Lambda(E)$ for any Hausdorff measure Λ . For instance there are f mapping sets E of positive logarithmic measure (but zero logarithmic capacity) to a single point. Consequently the method of Löwner's inequality will not work.

3. Quadratic inequalities. The method of exponentiating quadratic inequalties based on a lemma of Schur was introduced by Löwner [10] and FitzGerald [7]. Hamilton [9] introduced a continuous version for boundary value problems.

Let $A = (a_{ij})_{n \times n}$ be $n \times n$ complex matrices. The previous theory depends on two notions of Schur for A symmetric, B hermitian positive definite

- (i) Schur product $AB = (a_{ij}b_{ij})_{n \times n}$,
- (ii) Schur inequality A < B:

(1)
$$\left| \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \lambda_{i} \lambda_{j} \right| \leq \sum_{i=1}^{n} \sum_{j=1}^{n} b_{ij} \lambda_{i} \overline{\lambda}_{j}$$

for all $\lambda_1, \ldots, \lambda_n \in \mathbf{C}$.

The fundamental result is $A < B \Rightarrow A^2 < B^2$. In this paper we have the slightly different situation of real symmetric matrices and the inequality

(2)
$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \lambda_i \lambda_j \le \sum_{i=1}^{n} \sum_{j=1}^{n} b_{ij} \lambda_i \lambda_j$$

for all real $\lambda_1, \ldots, \lambda_n$. Furthermore we know that A and B are positive semidefinite.

LEMMA 1. For all real $\lambda_1, \ldots, \lambda_n$ and $m = 1, 2, \ldots$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{m} \lambda_i \lambda_j \le \sum_{i=1}^{n} \sum_{j=1}^{n} b_{ij}^{m} \lambda_i \lambda_j.$$

This is easily proved by induction noting that the Schur product is commutative: assuming $B^{m-1} - A^{m-1} > 0$ and multiplying by A > 0 Schur's lemma for products gives $AB^{m-1} - A^m > 0$. On the other hand B - A > 0 and multiplying by B^{m-1} gives $B^m - B^{m-1}A > 0$. Adding these two gives $B^m - A^m > 0$, which proves the lemma.

LEMMA 2. For any absolutely monotone function h(t):

(3)
$$\sum_{i=1}^{n} \sum_{j=1}^{n} h(a_{ij}) \lambda_i \lambda_j \leq \sum_{i=1}^{n} \sum_{j=1}^{n} h(b_{ij}) \lambda_i \lambda_j.$$

for all $\lambda_1, \ldots, \lambda_n \in \mathbf{R}$.

This lemma follows by induction from Lemma 1 for all polynomials h(t) with positive coefficients. Thus by approximation it holds for $h(t) = e^{\alpha t}$, $\alpha \ge 0$. Finally it is well known that for any absolutely monotone h

$$h(t) = \int_0^\infty e^{\alpha t} \, d\mu(\alpha)$$

for some positive measure μ , which together with the above consideration proves (3).

Actually we need to consider continuous versions of (3).

LEMMA 3. Suppose that A, B are real symmetric continuous on \mathbf{D}^2 and for any real-valued continuous function $\lambda(x)$ having compact support on \mathbf{D} we have

(4)
$$\begin{cases} \iint A(x,y)\lambda(x)\lambda(y)|dx|^2|dy|^2 \ge 0, \\ \iint B(x,y)\lambda(x)\lambda(y)|dx|^2|dy|^2 \ge 0, \end{cases}$$

(5)
$$\iint B(x,y)\lambda(x)\lambda(y)|dx|^2|dy|^2 \ge \iint A(x,y)\lambda(x)\lambda(y)|dx|^2|dy|^2.$$

Then for any absolutely monotone function h(t)

$$(6) \qquad \iint h(B(x,y))\lambda(x)\lambda(y)|dx|^{2}|dy|^{2} \geq \iint h(A(x,y))\lambda(x)\lambda(y)|dx|^{2}|dy|^{2}$$

for all real-valued continuous $\lambda(x)$ with compact support.

This is proved from Lemma 2 by approximating with Riemann sums (see Hamilton [9]). Further approximation arguments show that we may allow A, B to have singularities and λ to be a suitable measure. Carleson [5] considers kernels with singularities of the form $k(t) = \log 1/t$ and establishes potential theory for kernels h(k). Carleson requires that $\int_0^1 h(\log 1/t)t \, dt < \infty$. Consequently we have a class of admissible real measures μ satisfying

$$\iint_{\mathbf{DD}} h\left(\log \frac{1}{|x-y|}\right) |d\lambda(x)| |d\lambda(y)| < \infty,$$

i.e. the potential $\int h(\log(1/|x-y|)) d\lambda(x)$ has finite energy. Putting these facts together we get

PROPOSITION 1. Suppose that A, B are real symmetric on \mathbf{D}^2 , continuous except on the diagonal. Let

$$|A(x,y)| + |B(x,y)| \le C \log \frac{1}{|x-y|}$$

Then if (4), (5) are satisfied and h is any absolutely monotone function such that $h(\log(1/|z|)) \in L^1(\mathbf{R}^2)$ we have

$$\iint h(B(x,y)) \, d\lambda(x) \, d\lambda(y) \ge \iint h(A(x,y)) \, d\lambda(x) \, d\lambda(y)$$

for all real admissible measures supported on compact subsets of D.

4. Golusin and Nehari inequalities. The following two quadratic inequalities are essential.

THEOREM A (GOLUSIN [17]). Suppose that $f(z) = z + \sum_{n=1}^{\infty} a_n z^{-n}$ is univalent in $\Omega = \{|z| > 1\}$. Then for any points $z \in \Omega$ (j = 1, ..., n) and complex numbers $\lambda_1, \ldots, \lambda_n$

$$\left| \sum_{i=1}^n \sum_{j=1}^n \lambda_i \lambda_j \log \left| \frac{f(z_i) - (z_j)}{z_i - z_j} \right| \right| \leq \sum_{i=1}^n \sum_{j=1}^n \lambda_i \overline{\lambda}_j \log \frac{1}{(1 - 1/z_i \overline{z}_j)}.$$

THEOREM B (NEHARI [13]). Suppose that $f \in \mathcal{S}$, $f(\mathbf{D}) \subset \mathbf{D}$. Then

$$0 \le \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_k \lambda_j \log \left| \frac{f'(0)z_j z_k}{f(z_j) f(z_k)} \frac{f(z_j) - f(z_k)}{z_j - z_k} \frac{1 - f(z_j) \overline{f(z_k)}}{1 - z_j \overline{z}_k} \right|$$

for all $z_n, \ldots, z_n \in \mathbf{D}$ and $\lambda_1, \ldots, \lambda_n \in \mathbf{R}$.

The proof of continuous versions is immediate.

LEMMA 4. For $f \in \mathcal{S}$, $f(\mathbf{D}) \subset \mathbf{D}$

$$\iint_{\mathbf{DD}} \log \frac{|f'(0)xy|}{|(x-y)(1-x\overline{y})|} \lambda(x)\lambda(y)|dx|^{2}|dy|^{2}$$

$$\geq \iint_{\mathbf{DD}} \log \frac{|f(x)f(y)|}{|(f(x)-f(y))(1-f(x)\overline{f(y)})|} \lambda(x)\lambda(y)|dx|^{2}|dy|^{2}$$

for all real continuous λ supported on a compact subset of **D**.

The quadratic inequality of Lemma B may be rearranged to give

$$\sum_{j \neq k} \lambda_{j} \lambda_{k} \log \frac{|f(z_{j})f(z_{k})|}{|(f(z_{j}) - f(z_{k}))(1 - f(z_{j})\overline{f(z_{k})}|} \\
\leq \sum_{j \neq k} \lambda_{j} \lambda_{k} \log \frac{|f'(0)z_{j}z_{k}|}{|(z_{j} - z_{k})(1 - z_{j}\overline{z_{k}})|} \\
+ \sum_{j=1}^{n} \lambda_{j}^{2} \log \left| \frac{f'(z_{j})(1 - |f(z_{j})|^{2})}{(1 - |z_{j}|^{2})} \right|,$$

which on keeping z_j in a fixed compact subset of **D** and using an approximation argument we can ensure that the diagonal sum tends to zero as $n \to \infty$. A similar argument yields

LEMMA 5. Suppose that $f(z) = z \sum_{n=1}^{\infty} a_n z^{-n}$ is univalent in $\Omega = \{|z| > 1\}$. Then for any complex continuous λ compactly supported on Ω

$$\left| \iint_{\Omega\Omega} \lambda(x)\lambda(y) \log \frac{f(x) - f(y)}{x - y} |dx|^2 |dy|^2 \right|$$

$$\leq \iint_{\Omega\Omega} \lambda(x)\overline{\lambda(y)} \log \frac{1}{(1 - 1/x\overline{y})} |dx|^2 |dy|^2.$$

Unfortunately the kernels of Lemma 5 are not (quite) positive semidefinite. Consequently we need to restrict our attention to a subset of **D** where the kernels are "nearly" positive semidefinite.

5. Proof of Theorems 1 and 2. Without loss of generality we restrict our attention to compact sets $E \subset \partial \mathbf{D}$, with $C_h(E) > 0$. In particular $C_0(E) > 0$. For any $\varepsilon > 0$ choose an open set \widetilde{E} which is the union of Stolz angles with vertices on E such that \widetilde{E} and $f\widetilde{E}$ are subsets of the annulus $\{1 - \varepsilon < |z| < 1\}$ and there is a compact $F \subset \widetilde{E}$ with

$$|C_h(E) - C_h(F)| < \delta,$$

and provided $C_h(f(\widetilde{E})) < \infty$,

$$|C_h(f(E)) - C_h(f(F))| < \delta.$$

First we note

LEMMA 6. The kernel $\log(1/|1-\overline{x}y|)$ is positive semidefinite on **D**.

We write

$$\int_{\mathbf{D}} \log \frac{1}{(1 - \overline{x}y)} \, d\mu(y) = \sum_{n=1}^{\infty} \frac{\mu_n}{n} \overline{x}^n,$$

where $\mu_n = \int y^n d\mu(y)$. Hence as μ is real

$$\iint_{\mathbf{DD}} \log \frac{1}{(1-\overline{x}y)} \, d\mu(x) \, d\mu(y) = \sum_{n=1}^{\infty} \frac{|\mu_n|^2}{n}$$

for which we take real parts to get the required result.

Also we prove

LEMMA 7. The kernel $\log |(1-x\overline{y})/(x-y)|$ is positive semidefinite on **D**.

Let us define $G(x,y) = \log |(1 - \overline{x}y)/(x - y)|$, i.e., the Green's function of **D**. Thus by Riesz representation of harmonic functions (see [5]) if we define

$$u(x) = \int_{\mathbf{D}} G(x, y) \, d\mu(y),$$

provided $d\mu = \mu(y)|dy|^2$ where μ is C^2 then $\Delta u = (-2\pi)\mu$ and u = 0 on $\partial \mathbf{D}$. Consequently from Green's formulae

$$\iint_{\mathbf{DD}} \log \left| \frac{1 - x\overline{y}}{x - y} \right| d\mu(x) d\mu(y)$$
$$= (-2\pi) \int_{\mathbf{D}} u \Delta u |dx|^2$$
$$= (2\pi) \int_{\mathbf{D}} |\nabla u|^2 |dx|^2 > 0,$$

which proves the lemma.

Thus combining these results

LEMMA 8. The kernel $\log(1/|(x-y)(1-\overline{x}y)|)$ is positive semidefinite on **D**.

This follows from writing the kernel as

$$2\log\frac{1}{|1-\overline{x}y|} + \log\left|\frac{1-x\overline{y}}{x-y}\right|$$

which are positive kernels by the previous lemma.

Finally we deal with the $\log |xy|$ terms. We restrict our attention to a thin annulus $A: \{1-\delta \leq |x|, |y| \leq 1\}$. Now (even on A) $\log |xy|$ has positive and negative eigenvalues, so we find a kernel $K(x,y,\varepsilon)$ on A such that $\log |xy| + K(x,y,\varepsilon)$ and $\log |f(x)f(y)| + K(x,y,\varepsilon)$ are positive semidefinite on A; also we require that

$$\lim_{\varepsilon \to 0} \sup_{\Delta} |K(x, y, \varepsilon)| = 0.$$

To do this we use spectral resolution of the real symmetric kernel $\log |xy|$. On $L^2(A)$ the operator $\mathcal{L}g = \int_A \{\log |xy|\} g(y) |dy|^2$ spans a space with basis 1, $\log |x|$. Thus \mathcal{L} has rank 2 and

$$\log|xy| = \lambda_1 \phi_1(x)\phi_1(y) + \lambda_2 \phi_2(x)\phi_2(y)$$

where λ_j, ϕ_j are eigenvalues and orthonormal eigenfunctions of \mathcal{L} . Suppose that $\lambda_1 > 0$ and $\lambda_2 < 0$. Then we set

$$K(x, y, \varepsilon) = -\lambda_2 \phi_2(x) \phi_2(y)$$

and we shall see later that it has the required properties. First we need to estimate the λ_j . It is clear that we need only consider the effect of \mathcal{L} on functions of the form

$$g(y) = \alpha + \beta \log |y|$$
.

Then

$$\mathcal{L}g = (\tau_1 \alpha + \tau_2 \beta) + (\tau_0 \alpha + \tau_1 \beta) \log |x|$$

where

$$au_0 = \int_A 1 \cdot |dy|^2, \quad au_1 = \int_A \log |y| |dy|^2$$

and

$$\tau_2 = \int_A (\log |y|)^2 |dy|^2.$$

Consequently the equation for eigenvalues is

$$\begin{bmatrix} \tau_1 & \tau_2 \\ \tau_0 & \tau_1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \lambda \begin{bmatrix} \alpha \\ \beta \end{bmatrix}.$$

First we estimate the τ_j to $O(\varepsilon^5)$; a simple computation yields

LEMMA 9. Under the above notation

$$\begin{split} &\tau_0 = 2\pi \left(\varepsilon - \frac{1}{2}\varepsilon^2\right), \\ &\tau_1 = 2\pi \left\{ -\frac{\varepsilon^2}{2} + \frac{\varepsilon^2}{6} + \frac{\varepsilon^4}{24} + O(\varepsilon^5) \right\}, \\ &\tau_2 = 2\pi \frac{\varepsilon^3}{3} + O(\varepsilon^5). \end{split}$$

A direct computation now yields the eigenvalues (j = 1, 2)

$$\lambda_j = \tau_1 + (-1)^j \sqrt{\tau_0 \tau_2}$$

$$= 2\pi \left\{ \left(-\frac{1}{2} + \frac{(-1)^j}{\sqrt{3}} \right) \varepsilon^2 + \left(\frac{1}{6} + \left(-\frac{(-1)^j}{4\sqrt{3}} \right) \right) \varepsilon^2 + \cdots \right\}.$$

Next we compute the eigenfunctions

$$\psi_i = \alpha_i + \beta_i \log |x|.$$

For j = 1 we solve

$$\begin{bmatrix} \left(\frac{1}{\sqrt{3}}\varepsilon^2 + \cdots\right) & \frac{\varepsilon^3}{3} + \cdots \\ \varepsilon - & \left(\frac{1}{\sqrt{3}}\varepsilon^2 + \cdots\right) \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Thus we can solve to get

$$\psi_1 = \left(-\sqrt{3}\varepsilon\right) + \log|y|.$$

Then

$$\int_{A} |\psi_{1}|^{2} |dy|^{2} = 3\varepsilon^{2} \tau_{0} - 2\sqrt{3}\varepsilon \tau_{1} + \tau_{2}$$
$$= 2\pi \varepsilon^{3} \left(3 + \sqrt{3} + \frac{1}{3} + \cdots \right).$$

Consequently the normalized eigenfunction is

$$\phi_1 = \frac{-\varepsilon^{-1/2}}{\sqrt{2\pi(1+1/\sqrt{3}+\frac{1}{9})}} + \frac{-\varepsilon^{-3/2}\log|y|}{\sqrt{2\pi(3+\sqrt{3}+\frac{1}{3})}}.$$

In particular we have, for $x, y \in A$, $\lambda_1 \phi_1(x) \phi_1(y) = O(\varepsilon^2 \varepsilon^{-1}) = O(\varepsilon)$ as $\log |x| = O(\varepsilon)$ on A. We then obtain a similar result for the other eigenvalue. Let us summarize this in

LEMMA 10. As $\varepsilon \to 0$; $x, y \in \{1 - \varepsilon < |z| < 1\}$.

$$\lambda_j \phi_j(x) \phi_j(y) = O(\varepsilon).$$

In particular we see that the function $K(x, y, \varepsilon)$ is $O(\varepsilon)$.

LEMMA 11. The following kernels are positive semidefinite on $\{1-\varepsilon < |x|, |y| < 1\}$:

$$K_1 = \log |xy| + K(x, y, \varepsilon), \quad K_2 = K(x, y, \varepsilon).$$

This is because, by explicit construction, the eigenvalue of K_j is $(-1)^{j+1}\lambda_j$. Next we consider the kernel $\log |f(x)f(y)|$. It would be most complicated to follow through the above procedure; however by change of variables we can easily reduce to the above case. Also we need to observe that we are restricting ourselves to $x, y \in \widetilde{E}$, $f(\widetilde{E}) \subset \{1 - \varepsilon < |z| < 1\}$.

LEMMA 12. The following kernels are positive semidefinite on \widetilde{E} :

$$K_3 = \log |f(x)f(y)| + K(f(x), f(y), \varepsilon),$$

$$K_4 = K(f(x), f(y), \varepsilon).$$

To prove this we observe that

$$K_3 = K_1(f(x), f(y)) = \lambda_1 \phi_1(f(x)) \phi_1(f(y))$$

and

$$K_4 = \lambda_2 \phi_2(f(x)) \phi_2(f(y))$$

and each of these is positive semidefinite.

REMARKS. If K_1, K_2 had contained more than one eigenfunction the above substitution would not have worked. Finally we have, analogous to Lemma 10,

LEMMA 13. As $\varepsilon \to 0$, $x, y \in \widetilde{E}$ $K_j(x, y) = O(\varepsilon)$.

We are now ready to prove Theorem 1. We add

$$\iint (K_2(x,y) + K_4(x,y))\lambda(x)\lambda(y)|dx|^2|dy|^2$$

to both sides of the quadratic inequality of Lemma 4, to obtain for admissible λ :

$$\begin{split} \iint_{\widetilde{E}\widetilde{E}} A(x,y)\lambda(x)\lambda(y)|dx|^2|dy|^2 \\ & \leq \iint_{\widetilde{E}\widetilde{E}} (B(x,y) + \log|f'(0)|)\lambda(x)\lambda(y)|dx|^2|dy|^2 \\ & \leq \iint_{\widetilde{E}\widetilde{E}} B(x,y)\lambda(x)\lambda(y)|dx|^2|dy|^2, \end{split}$$

as $|f'(0)| \le 1$. Now

$$A(x,y) = \log \frac{|f(x)f(y)|}{|(f(x) - f(y))(1 - f(x)f(\overline{y}))|} + K_2 + K_4$$

and

$$B(x,y) = \log \frac{|xy|}{|(x-y)(1-\overline{x}y)|} + K_2 + K_4.$$

By our previous lemmas, A and B are positive semidefinite. Thus we may apply Proposition 1, i.e., for any absolutely monotone h with $h(\log(1/|z|)) \in L^1(\mathbf{R}^2)$, letting $h_0(t) = h(t/2)$

$$\iint h_0(A(x,y)) \, d\lambda(x) \, d\lambda(y) \le \iint h_0(B(x,y)) \, d\lambda(x) \, d\lambda(y)$$

for all admissible real measures $d\lambda$. Next we note that for any $\delta > 0$, there is an $\varepsilon > 0$ and an \widetilde{E} such that

$$h(A(x,y)) = h_0 \left(\log \frac{1}{|f(x) - f(y)|^2} \right) + O(\delta),$$

 $h(B(x,y)) = h_0 \left(\log \frac{1}{|x - y|^2} \right) + O(\delta)$

uniformly on \widetilde{E} . This follows from Lemma 13 and the definition of \widetilde{E} . Consequently we have

$$\begin{split} \iint_{\widetilde{E}\widetilde{E}} h\left(\log \ \frac{1}{|f(x) - f(y)|}\right) \, d\lambda(x) \, d\lambda(y) \\ & \leq \iint_{\widetilde{E}\widetilde{E}} h\left(\log \frac{1}{|x - y|}\right) \, d\lambda(x) \, d\lambda(y) + O(\delta) \end{split}$$

for any measure μ with

$$\iint_{\widetilde{E}\widetilde{E}} h\left(\log\frac{1}{|x-y|}\right) \, d\lambda(x) \, d\lambda(y)$$

finite. We now let our measures be probability measures supported by F. In particular let λ_n be a sequence such that

$$\iint_{\widetilde{F}\widetilde{F}} h\left(\log\frac{1}{|x-y|}\right) \, d\lambda_n(x) \, d\lambda_n(y)$$

tends toward the infimum. Thus by the above inequality

$$\begin{split} \inf_{\lambda} \iint_{f(F)f(F)} h\left(\log\frac{1}{|x-y|}\right) \, d\lambda(x) \, d\lambda(y) \\ & \leq \inf_{\lambda} \iint_{FF} h\left(\log\frac{1}{|x-y|}\right) \, d\lambda(x) \, d\lambda(y) + \delta. \end{split}$$

Consequently recalling the construction of F, letting $\delta \to 0$ and taking $e^{h^{-1}}$ of both sides gives us a generalization of Theorem 2:

PROPOSITION 2. Suppose that $f \in \mathcal{S}$, $f(\mathbf{D}) \subset \mathbf{D}$ and $E \subset \partial \mathbf{D}$ with $f(E) \subset \partial \mathbf{D}$. Then for any admissible capacity

$$C_h(f(E)) \ge C_h(E)$$
.

This is not quite a generalization of Theorem 1 because we lost our |f'(0)| factor. To prove Theorem 1 we begin with

$$\iint_{\widetilde{E}\widetilde{E}} A_1(x,y) \, d\lambda(x) \, d\lambda(y) \le \iint_{\widetilde{E}\widetilde{E}} B(x,y) \, d\lambda(x) \, d\lambda(y)$$

where $A_1 = A(x,y) + \log(1/|f'(0)|)$ which is positive semidefinite. We then follow through the previous method with explicit function $h(t) = e^{\alpha t}$ and pick up the extra factor.

Theorem 1 follows immediately from Frostman's relation between capacity and Hausdorff measure (see [5]).

6. Proof of Theorem 3. The argument here is similar to the previous section so we just sketch it. We use the continuous form of the Golusin inequalty to write

$$\left| \iint \lambda(x)\lambda(y) \log \frac{1}{|f(x) - f(y)|} |dx|^2 |dy|^2 \right|$$

$$\leq \iint \lambda(x)\lambda(y) \log \frac{1}{|1 - 1/x\overline{y}|} |dx|^2 |dy|^2$$

$$+ \left| \iint \lambda(x)\lambda(y) \log \frac{1}{|x - y|} |dx|^2 |dy|^2 \right|$$

for all real-valued continuous λ compactly supported on Ω . Then as in §2 we restrict ourselves to λ supported on $\{1 < |z| < 1 + \varepsilon\}$.

From an approximation argument similar to that of §2

$$\log \frac{1}{|x-y|} = \log \frac{1}{|1-1/x\overline{y}|} + A(x,y,\varepsilon),$$

where $A(x, y, \varepsilon) \to 0$ uniformly as $\varepsilon \to 0$. Thus we get

$$\left| \iint \lambda(x) \, \lambda(y) \log \frac{1}{|f(x) - f(y)|} |dx|^2 |dy|^2 \right|$$

$$\leq 2 \iint \lambda(x) \lambda(y) \log \frac{1}{|1 - 1/x\overline{y}|} |dx|^2 |dy|^2$$

$$+ \left| \iint \lambda(x) \lambda(y) A(x, y, \varepsilon) |dx|^2 |dy|^2 \right|$$

where $A(x, y, \varepsilon)$ uniformly tends to 0 as $\varepsilon \to 0$, and is positive semidefinite. Now any such quadratic inequality for real kernels implies the same inequality with complex $\lambda(x)$ supported in $\{1 < |z| < 1 + \varepsilon\}$, see FitzGerald and Horn [8]. Consequently for any complex-valued continuous $\lambda(x)$ compactly supported on $\{1 < |z| < 1 + \varepsilon\}$:

$$\left| \iint \lambda(x)\lambda(y) \log \frac{1}{|f(x) - f(y)|} |dx|^2 |dy|^2 \right|$$

$$\leq \iint \lambda(x)\overline{\lambda}(y) \left\{ \log \frac{1}{|1 - 1/x\overline{y}|^2} + A(x, y) \right\} |dx|^2 |dy|^2.$$

We may then "exponentiate" this expression in accordance with Schur's lemma. Thus for any absolutely monotone function h

$$\left| \iint \lambda(x)\lambda(y)h\left\{\log\frac{1}{|f(x) - f(y)|}\right\}|dx|^2|dy|^2 \right|$$

$$\leq \iint \lambda(x)\lambda(y)h\left\{\log\frac{1}{|1 - 1/x\overline{y}|^2}\right\}|dx|^2|dy|^2 + O(\varepsilon),$$

for all continuous positive $\lambda(x)$ supported in $\{1 < |z| < 1 + \varepsilon\}$, and satisfying $\int \lambda(x)|dx|^2 = 1$. To complete the proof of Theorem 2 we take sets $\widetilde{E} \subset \{1 < |z| < 1 + \varepsilon\}$ such that $C_h(E)$ is approximated by $C_h(\widetilde{E})$, and $C_h(f(E))$ by $C_h(f(\widetilde{E}))$. Thus the proof in this section is just a slight variation of that in the previous section.

Finally we prove the Corollary. Notice that if h has slow growth then for any set E:

$$C_2(E) \ge C_1(E)^n.$$

To see this one simply inspects the kernels. Consequently by Theorem 3 $C_h(f(E)) = 0$ implies $C_h(E) = 0$.

7. Fixed points of conformal maps. Carleson sets are exactly the zero sets of the class A_{α} of functions h(z) analytic on \mathbf{D} and Hölder continuous with exponent α , $0 < \alpha \le 1$, on $\overline{\mathbf{D}}$, see [4].

Now we define the concept of a holomorphic conformal flow. We say that a class of functions $f_{\lambda} \in \mathcal{S}$, with parameter $\{|\lambda| < 1\}$ is a holomorphic flow if

- (i) $f_{\lambda}(z)$ is holomorphic in $\lambda \in \mathbf{D}$ for fixed z.
- (ii) $f_0(z) \equiv z$.

The importance of holomorphic flows comes from quasiconformal theory. A set $E \subset \partial \mathbf{D}$ is a fixed set for a holomorphic flow f_{λ} if $f_{\lambda}(z) = z$ for $z \in E$, $|\lambda| < 1$.

PROPOSITION 3. A set $E \subset \partial \mathbf{D}$ of positive capacity is a fixed set for a holomorphic conformal flow if and only if E is a Carleson set.

Now if E is a Carleson set there is a nontrivial $h \in A_1$ with h(0) = 0, $||h'||_{\infty} < 1$ and h(z) = 0 on E. Then we set

$$f_{\lambda}(z) = z + \lambda h(z)$$

and note that for $|\lambda| < 1, z_j \in \mathbf{D}$

$$|f_{\lambda}(z_1) - f_{\lambda}(z_2)| \ge |z_1 - z_2|(1 - |\lambda| ||h'||_{\infty}),$$

which implies that $f_{\lambda} \in \mathcal{S}$.

Conversely, if f_{λ} is a holomorphic conformal flow then by the λ -lemma of Bers and Royden [2], $f_{\lambda}(z)$ has a quasiconformal extension to C for $|\lambda| < 1$. Consequently, E is a zero set of the Hölder continuous function $f_{\lambda}(z) - z$. Therefore E is a Carleson set.

The theorem shows that any Carleson set is a set of nonuniqueness for \mathscr{S} . We now display a Carleson set of dimension 1. It is easier to think of $\partial \mathbf{D}$ with normalized arc length as the interval (0,1). We construct a Cantor set. At the first stage, remove an open interval I_1 of length $(1-\alpha_1)$, etc., so that at the *n*th stage we get a set E_n consisting of 2^n subarcs of length $\alpha_1 \cdots \alpha_{n-1} (1-\alpha_n)/2^n$. To see that E is a Carleson set, note $|E| \leq \alpha_1 \cdots \alpha_n$ and

$$\sum_{j} l_{j,n} \log(l_{j,n}^{-1}) = \sum_{n=1}^{\infty} (\alpha_1 \cdots \alpha_{n-1}) (1 - \alpha_n) \log \frac{2^n}{(\alpha_1 \cdots \alpha_{n-1})(1 - \alpha_n)}.$$

Let us choose $\alpha_n = 1 - n^{-1/2}$. Then as $n \to \infty$

$$\alpha_1 \cdots \alpha_n \to 0$$

while

$$\sum_{j} l_{j,n} \log(l_{j,n}^{-1}) \le C_1 \sum_{j} (n-1) e^{c_2 - n^{1/2}} < \infty.$$

On the other hand E has dimension 1 since if the α_j are constant $\alpha < 1$, dim $E = \log 2/\log \frac{2}{\alpha}$. However the Hausdorff dimension of E is not affected by finitely many α_j . Thus as $\alpha_n \to 1$ we get dim E = 1.

If we have $f \in \mathcal{S}$, with $f(\mathbf{D}) \subset \mathbf{D}$ then Theorem 1 says that any fixed set must have zero capacity. We now use the Löwner differential equation to generate fixed sets $E \subset \partial \mathbf{D}$ of flows $f_t \in \mathcal{S}$, $0 \le t \le 1$, and $f_t(\mathbf{D}) \subset \mathbf{D}$.

PROPOSITION 4. Let p(z) be analytic on **D**, and

- (i) $p(z) = 0, z \in E$,
- (ii) p(0) = 1, Re p > 0 on **D**,
- (iii) p(z) has modulus of continuity $\omega(t)$ on $\overline{\mathbf{D}}$ satisfying

$$\int_0^1 \frac{dt}{\omega(t)} = \infty.$$

Then the solution of the system $\dot{f}_t = -f_t p(\underline{f}_t)$, $f_0(z) = z$ is univalent on \mathbf{D} , continuously differentiable with respect to t on $\overline{\mathbf{D}}$, and satisfies $f_t(z) = z$ for $z \in E$.

We do not include the complete details of the proof since it is only a variation of the standard one for the Löwner equation, see [18]. The existence and uniqueness of solutions of first-order systems can be proved under assumption (iii), the so-called Osgood condition. The uniqueness of solutions implies f_t is one-to-one on $\overline{\mathbf{D}}$.

Finally we observe that Propositions 3 and 4 actually have an application to "peak sets" of Hölder classes. Recall that $E \subset \partial \mathbf{D}$ is a peak set of a function h analytic on \mathbf{D} , continuous on $\overline{\mathbf{D}}$, if $\operatorname{Re} h > 0$ on \mathbf{D} but h(z) = 0 on E. B. A. Taylor and D. Williams [18] prove that the peak set of the Lipschitz class A_1 is a finite set, while Noell and Wolff [15] prove that every peak set of A_{α} has $(1 - \alpha)$ Hausdorff measure zero. These peak sets are closely related to the fixed points of Proposition 4. Observe that E is a peak set of p implies E is a fixed set for f_t . We define a

general class of functions A_{ω} as follows. A_{ω} consists of functions h analytic on \mathbf{D} with modulus of continuity w(t). Now if $\int_0^1 dt/\omega(t) = \infty$ then A_{ω} falls between A_1 and $\bigcap_{\alpha<1} A_{\alpha}$. Thus by Proposition 4 any peak set of A_{ω} is a fixed set for S, with $f(\mathbf{D}) \subset \mathbf{D}$. Consequently from Theorem 1 we deduce

COROLLARY 2. Let E be a peak set of A_{ω} , where $\int_0^1 dt/\omega = \infty$. Then $C_0(E) = 0$.

REFERENCES

- K. Barth, D. Brannan and W. K. Hayman, Research problems in complex analysis, Bull. London Math. Soc. 16 (1984), 490-517.
- 2. L. Bers and H. Royden, Holomorphic families of injections, Acta Math. 157 (1986), 259-286.
- 3. A. Beurling, Ensembles exceptionelles, Acta Math. 72 (1940), 1-13.
- 4. L. Carleson, Sets of uniqueness for functions analytic in the unit disk, Acta Math. 87 (1952), 325-345.
- 5. ____, Selected problems on exceptional sets, Van Nostrand, 1967.
- K. Döppell, H. Köditz and S. Timman, Bemurkungen über Fixpunktmengen schlichter Functionen, Rend. Inst. Math. Univ. Trieste 8 (1976), 162-166 (1977).
- C. H. FitzGerald, Quadratic inequalities and coefficient estimates for schlicht functions, Arch. Rational Mech. Anal. 46, 356-368.
- 8. C. H. FitzGerald and R. Horn, On the structure of hermitian symmetric matrices, J. London Math. Soc. (2) 15 (1977), 419-430.
- 9. D. H. Hamilton, Quadratic inequalities and interpolation, J. Analyse Math. 43 (1984), 26-50.
- C. Löwner, Untersuchungen über schlichte konforme Abbildungen des Einheitskreises, Math. Ann. 89, 103–121.
- 11. N. G. Makarov, On the distortion of boundary sets under conformal mappings, Proc. London Math. Soc. (3) 51 (1985), 369-384.
- 12. ____, Conformal mapping and Hausdorff measures, (preprint).
- 13. Z. Nehari, Some inequalities in the theory of functions, Trans. Amer. Math. Soc. 75 (1953), 256-286.
- 14. R. Nevanlinna, Analytic functions, Springer-Verlag, 1970.
- 15. A. V. Noell and T. H. Wolff, On peak sets for Lip α classes, J. Functional Anal. (to appear).
- C. Pommerenke, On the logarithmic capacity and conformal mapping, Duke Math. J. 35 (1968), 321–326.
- 17. ____, Univalent functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
- B. H. Taylor and D. L. Williams, The peak sets of A^m, Proc. Amer. Math. Soc. 24 (1970), 604-606.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MARYLAND, COLLEGE PARK, MARYLAND 20742